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Abstract. I t  is known that a one-dimensional random Ising model with a magnetic field h 
and two types of exchange bonds, K 2 = a  and K ,  =0 ,  has a Griffiths singularity in its 
magnetisation. Two arguments, one based on an expansion in the concentration of K 2  
bonds and the other on decimation, are given which imply that a Griffiths singularity persists 
when K1 f 0. The possibility of Grifiths singularities in non-dilute random magnets of 
higher dimension is briefly discussed. 

1. Introduction 

If an Ising model is randomly diluted, the magnetisation is a non-analytic function of the 
magnetic field h at h = 0 for temperatures below the critical temperature of the pure 
system (Griffiths 1969). Although such singularities probably are experimentally 
unobservable (Imry 1977), their unusual character continues to motivate theoretical 
interest (Wortis 1974, Domb 1974a, b, Harris 1975, Bakri and Stauffer 1976, Grinstein 
etal 1976); the spherical model has also been studied (Rauh 1976a, b, de Menezes etal 
1977). The physical basis of the singularities is that the dilute system responds to a 
magnetic field as though arbitrarily large paramagnetic moments existed with finite 
probability. For instance, a one-dimensional Ising model with a concentration p of 
ferromagnetic bonds has the zero-temperature magnetisation (Matsubara et a1 1973, 
Wortis 1974) 

m 

f i  = (1 -p) '  1 npfl-l tanh(nh). 
f l= l  

The poles of the giant-moment magnetisations tanh(nh) lie on the Im h axis and have a 
limit point at h = 0, where a Griffiths essential singularity occurs (Schwartz 1978). 

In terms of the bond probability distribution 

P ( K ) = ( l  - p ) S ( K - K , ) + p S ( K - K 2 ) ,  (2) 
the Griffiths singularities are known to exist at K1 = 0 at sufficiently low temperature. It 
is natural to ask whether they continue to exist for K1 # 0 or whether they are a 
peculiarity of the dilute system (for example, the limit point in equation (1) might be 
shifted to Im h = *O(K:) for small non-zero K l ) .  In this paper, this question will be 
investigated for the one-dimensional Ising model. For p = 1 the critical point is at 
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K 2  = CO, and we shall search for signs of a Griffiths singularity when K1 is finite and K2 
infinite. To our knowledge, the possibility of Griffiths singularities in non-dilute 
random systems has not been studied previously. 

Although not rigorous, our arguments will indicate that Griffiths singularities persist 
when K I  # 0. This conclusion has been mentioned briefly elsewhere (Grinstein er a1 
1976). 

The paper is divided into four parts. In 0 2 we obtain the perturbation series in 
powers of p for the free energy, and examine the series for a Griffiths singularity. The 
expansion is divided into two series: the first gives (1) when K1 = 0 and the second 
vanishes when K1 = 0. Arguing that, at least for small K1, singularities in the first series 
cannot be cancelled by singularities in the second, we find a Griffiths singularity at h = 0 
in the first series even when K 1  # 0. In 0 3 the Ising chain is studied by tracing over every 
spin in the system but one; a Griffiths singularity is found for K1 # 0. Also discussed is 
the possibility of Griffiths singularities in non-dilute random magnets of dimension 
d > 1 for K1 # 0. Section 4 ends the paper with a summary and discussion of our 
arguments. 

2. GrWiths singularity and perturbation theory 

2.1. Perturbation theory 

The quenched random spin-; Ising model in a magnetic field h has the effective 
Hamiltonian 

(3) 

The quenched random bonds Kij coupling each pair of adjacent spins are assigned 
according to the distribution (2). The free energy f per spin and magnetisation m per 
spin are given by 

- p Z  = Kijsi~j + h si, si = *l. 
i j  I 

f = N-’  In tr e-’z, m = af/ah, (4) 

where N is the number of spins in the system. A bar superscript will be placed over 
quantities which are averaged over P (K) ,  e.g. f, f i .  

It is well known (Vedenov and Dykhne 1968, Lehman and McTague 1968, Fan and 
McCoy 1969, Chalupa et a1 1976) that the thermodynamics of the random Ising chain 
can be expressed in terms of the solution of a linear integral equation. Defining 

- 2 h  = e  x (K=co) ,  
one obtains 

where v(R) is the solution to 
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The properties of equation (7) are sufficiently complex that work continues to be done 
on the random Ising chain (Landau and Blume 1976,1977, Fern6ndez 1977, Morgen- 
stern et a1 1978, Vilenkin 1978). 

As mentioned earlier, we are interested in the case KZ = 00 because this is the critical 
point of the chain for p = 1. For the dilute case K1 = 0, equation (7) becomes an 
inhomogeneous equation which is easily solved by substituting the trial function 
v(R) = S(R -Ro) and iterating. We find 

For K1 # 0 we get 2" distinct delta-functions at the nth iteration, and the process cannot 
be completed analytically. 

However, we can make progress by generating a formal expansion of v(R) in powers 
of the concentration p of strong bonds; with such an expansion we can use equation (6 )  
to calculate the thermodynamic functions in powers of p .  We define 

where v,(R) is independent of p .  Substituting (9) into (7) and equating coefficients of p ,  
we obtain 

vn+l (R)  = vn+l(LKl,h (R )) + vn ( L K 2 , h  (R )) - vn (LKl,h (R)) (n # 0 )  ( loa)  

vO(R) = vO(LKl,h(R)). (106) 
The functional equation ( loa)  for V , + ~ ( R )  may be solved by iteration if v,(R) is known. 
The vn's will be expressed in terms of the distribution function vo(R) for the pure king 
chain, 

vo(R) = S(R -Ro) (1 la )  
Ro = LKl.h(RO) = ezK1-h[-sinh h +(sinh2 h +e-4K1)1'2] (116) 

R~ = e-''' ( K ~  = 0). (1lc) 
Our next task is to devise a compact notation to represent the functions v,(R). Since 

we are iterating bilinear transformations, it is natural to use continued fractions. 
Equation (106) may be rewritten as 

By iterating (12) repeatedly, we express Ro as an infinite continued fraction. With 
respect to this fraction, we define R(ml ,  . . . , m,) with mi > 0, as the infinite continued 
fraction in which the mith terms of Ro are replaced by 

To elucidate this definition, we give the result of iterating ( loa)  for v l  and v2: 
m 

vl(R)= 1 [S(R-R(m))-S(R-Ro)I ( 1 4 ~ )  
m = l  
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Now consider an ordered n-tuplet (al, a 2 , .  . . , a,) with ai < ai+l. We define projection 
mappings 4, with k = 0, 1, , , , , n, which project the set into a coordinate with n - k 
terms and preserve the order relation among the elements. There are thus 2" such 
mappings for (al ,  a 2 , .  . . , a,,). In this notation, the result of iterating the equation for 
v,(R) is 

x ( R  -R(Pk(m,, m, + m , - l , .  . . , m, + m,-i +. . . + m l ) ) ) .  (15) 

It is known that functions like v(R) have unusual characteristics (Lieb and Mattis 
1966). For our purposes v(R) and v,(R) are useful only insofar as they yield a formal 
expansion off and A in powers of p. As in many arguments to all orders in perturbation 
theory, formal manipulations were used to obtain the series (8) and (15), without regard 
for their convergence. 

2.2. Grifiths singularity 

We begin our search for the Griffiths singularity by re-establishing contact with the 
known results for the dilute chain. By splitting equation (15) into two pieces, we write 

m 

= (1 -p)  ~ " s ( R  - R ( I , .  . . , n)). 
n =O 

Recalling (5b) and ( l l c ) ,  we obtain (8) from (17b) when K1 = 0. From (12) and (13) we 
notice that the infinite continued fractions R ( m l ,  . . . , m,) become finite when K 1  = 0. 
Substituting (176) into the free energy (6), after a little algebra we recover the 
magnetisation (1). From (6) it is apparent that the poles of A are given by the roots of 

1 + R ( l , .  . . , n)  = 0, (18) 

which reduces to 

(19) 

for the dilute case, in agreement with Wortis (1974). 
Inspection of (13) and (15) reveals that v ( ~ ) ( R )  = 0 when K1 = 0 because all the terms 

of v(R) not in v( l )  cancel each other. If we ignore this cancellation, substitute v(*) into 
(6) and calculate A, we find that at a given power of p"  in A, no singularity from v(2)  can 
cancel a singularity from v"), i.e. no pole of A from v( l )  has the same location and equal 

1 + e - 2 ( n + l ) h -  - 0, n = 0, 1,  . . . 
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and opposite residue as any pole from Z J ( ~ ) .  Explicitly, the singularities from v( ’ ) (R) ,  for 
a given power of n L 2,  are at the solutions of (cf ( 1 7 b ) )  

( 2 0 )  m = n, n - 1 .  1 + e - 2 ( m + l ) h =  0 ,  

The singularities from V ( ~ ’ ( R )  are at 

( 2 1 )  1 + e - 2 ( m + l ) h  - - 0, m = O , l ,  . . . ,  n - 2 .  

Now consider K1 # 0 and regard the R (ml,  . . . , m,)’s as Taylor series in K1. In this 
case v2(R)  # 0. A little reflection on (6)  convinces one that, as above for K1 = 0, 
singularities from Y(’) cannot exactly cancel singularities from v ( l l  contributing to tii. In 
other words, the singularities from the roots of (18 )  cannot be cancelled by other 
singularities. So if the roots of ( 1 8 )  lie on the Im h axis and have a limit point at h = 0 for 
large n, our non-dilute Ising chain has a Griffiths singularity at h = 0. 

The solutions to ( 1 9 )  are (Wortis 1974) 

hno = (m +$).rri/(n + l ) ,  m =  . . . ,  - l , O , l , . . . .  ( 2 2 )  

For our purpose it is sufficient to study the effects of non-zero K1 on the rlt = 0 terms in 
(22 ) .  We rewrite ( 1 8 )  as 

[-sinh h + (sinh2 h + e-4K1)1’2] = 0. ( 2 3 )  1 +e2K,-(2n+l)h 

The solutions to (23 )  can be expanded formally around the values ( 2 2 )  in powers of K1: 

CO 

h,  = h,,KY. 
m = O  

A simple computation yields 

h,l = (tanh hf lo ) / (n  + 1 ) .  ( 2 5 )  

Clearly hf l l  becomes arbitrarily small as n becomes large. By substituting ( 2 4 )  into ( 2 3 )  
and expanding in powers of K1, we find that the factor of exp[-(2n + l ) h ]  forces h,, for 
any given m to vanish as n becomes sufficiently large. So when K1 f 0, h = 0 remains 
the limit point of solutions of (23 ) ,  giving rise to a Griffiths singularity. 

We can check this conclusion by studying the expansion of h, in inverse powers of n : 

m 

h, = hkm(n + l ) - m  
m = l  

A little algebra yields 

hko = ( n  + l)h,o = ( m  +$)vi 

hkl = -$(e2K1 - l )hko  

h L 2  = z(e - 1)2h Lo.  1 2K 

Inspection of (23 )  indicates that the expansion can be continued to all powers of 
( n  + l ) - ’ .  Once again we conclude that h = 0 is a limit point of solutions of (23 ) .  
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3. GrilEths singularities from decimation 

3.1. Decimation in one dimension 

Consider an Ising chain with a distribution of bonds assigned according to (2), with 
K z  = 00. If n spins are connected by KZ bonds, they act like a single giant moment. Thus 
the magnetisation per spin of the system is equal to the magnetisation per spin of a 
system of giant moments interacting with exchange bond K1; in other words, our 
problem has been mapped into an king chain with exchange K1 in a random magnetic 
field at each spin site, for which the distribution is 

m 

P ( H )  = (1 - p y  np"-'S(H - nh) .  
f l=l  

The magnetisation associated with P(H)  correctly reduces to (1) when K1 = 0. 
For K1 # 0 we select a spin A in the chain and trace over all spins except A. This 

leaves A a free spin in a renormalised magnetic field. The exchange distribution P(K) 
determines the distribution P*(H*) of renormalised fields H*. If there is no finite value 
of H* beyond which P*(H*)  vanishes and if the contributions to f i  from H* + 00 and 
H * + - ~ o  do not cancel, a Griffiths singularity in the average magnetisation occurs 
(Grinstein et a1 1976). 

We are unable to write down a useful expression for H*. We are interested in the 
analytic properties of f i  ( h )  for h near zero. Therefore we linearise H* in h, which is an 
increasingly good approximation as h becomes arbitrarily small; the factor nh in (28) 
becomes arbitrarily large as n increases for fixed h (Harris 1975), but for fixed n it can 
be made arbitrarily small by choosing-h close enough to zero. It is straightforward to 
show that 

by generating the high-temperature series for H* in powers of tl = tanh K1 (cf Grinstein 
er a1 1976). Hnl and Hn2 refers to the fields on spins which are respectively n bonds to 
the left and right of spin A. Clearly P*(H*) = 0 for H* < h if tl 2 0 and h B 0; if tl < 0, 
P* has weight at both positive and negative values of H*. 

If tl B 0 it can be shown that P*(H*) extends to infinity and hence induces a Griffiths 
singularity. Consider 

m 

Q(P*(x ) )  I dH*P*(H*) 
x 
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So if Q ( P ( x ) ) > O  for arbitrarily large x ,  Q ( P * ( x ) ) > O  also. If tl<O there can be 
negative contributions to the theta-function from the sums in (30b), and the argument 
breaks down. Similar results appear to hold on the Bethe lattice. 

It is instructive to express this argument more loosely. P ( H )  consists of equally 
spaced delta-functions whose weight is np". On a 'coarse-grained' scale, P ( H )  decays 
like He-aH. Thus we can gain insight (Harris 1975) by determining the P* associated 
with the distribution 

P ( H )  = Ei-' e-H'"8(H). (31) 

The Fourier transform of (31) is 

1 
iHs + 1 

P ( s )  = I d H  e-'"P(H) = -. 

Taking the Fourier transform of (29), we obtain 
W 

P*(S) = P(s )  n (P(str;))2 
n = l  

W 

= l/(ifis + 1 )  n (ii?t;s + I)*.  
n = l  

(336) 

Inverting the Fourier transform by contour integration and selecting the dominant pole, 
we find for large positive H* 

where m = 1 if t l  2 0 and m = 2 if t l  < 0. For negative H*, P*(H*) is zero unless t1 is 
negative, in which case 

(35) -H*/(tit i P*(H*) - e + (higher-order terms). 
H'-.-ao 

Substituting (34) and (35) into 
m 

dH*P*(H*) tanh H*, 

we find that the poles of tanh H* on the imaginary axis get smeared down arbitrarily 
close to the origin, so that an expansion of rii in powers of fi will not converge. From 
(34) one sees that the amplitude of the leading exponential in P*(H*) increases for 
tl > 0 in agreement with (30), and decreases for tl < 0; for tl C 0 the tails of the 
distribution near H = fa do not cancel out the singularity at fi = 0. 

The correction term in (34) indicates that rii is non-analytic not only in i? but also in 
f i r ; .  This underscores the riskiness of power-series expansions in tl or K1. 

In summary, (30) and (34) suggest that the Griffiths singularity persists when K 1  > 0; 
(34) suggests that it persists when K 1  C 0. 

3.2. Decimation in d > 1 dimensions 

In this section we describe the arguments of 0 3.1 in a weakened form which, however, is 
generalised to an arbitrary number of dimensions. Consider a magnetic field h acting 
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on a &dimensional random Ising system for which f i  (H = 0) = 0, and whose bonds are 
distributed according to (2)  with K 2  > K,; in other words the temperature is between 
the critical temperatures of the pure and disordered system and there is no spontaneous 
long-range order. If one traces over all spins on the lattice except some spin A, h will as 
before be transformed into a renormalised field H* acting on A ; the magnetisation of A 
is mA = tanh H*. The magnetisation per spin of the random system is calculated by 
taking the configurational average of mA over P ( K ) ,  which is equivalent to determining 
P*(H*) in (20)  and (36) .  

As in 0 3,  we take h small and calculate H* to first order in h :  

After writing 

e-*% = [n (1 +sisi tanh Ki j )  cosh Kii 
I ]  1 ( 1  +s i  tanh h )  cosh h , (38)  

it is especially easy to see from (37a)  that on a Bethe lattice the coefficient of t;tY in the 
expansion for H* is positive. Then H* increases as tl increases. Since Griffiths 
singularities exist for t l  = 0, P*(H*) extends to CO for tl > 0. But since H* increases with 
K1, P*(H*) must extend to CO for tl > 0 as well. Thus Griffiths singularities exist for a 
binary mixture of ferromagnetic bonds on a Bethe lattice. 

We emphasise that (376)  does not converge below the ordering temperature of the 
random system. In fact the convergence of the expansion of H* in the ti's is doubtful 
even in the temperature range we consider (cf Griffiths 1969), and the argument above 
is only suggestive. 

However, one expects that xAj = (sAsj)  in (376)  usually increases with K1 for fixed p 
and K 2 ,  i.e. as diluted bonds are turned into weak ferromagnetic ones: the configura- 
tional average of ZixAi is the susceptibility 2. Until it diverges when the critical point is 
reached, 2 should increase with K1. So if H* usually increases with K1, the existence of 
Griffiths singularities for K1 = 0 implies their existence for K1 > 0 as well. 

4. Discussion 

In this paper we have investigated the existence of a delicate singularity in the 
magnetisation of the random Ising chain. Not finding a rigorous argument, we have 
given two rather different non-rigorous ones instead. The agreement between two 
dissimilar arguments strengthens our confidence in the validity of our result. 

In 0 2 an expansion of v(R) in powers of p and an iterative solution to (10)  were 
given, both without regard to convergence. The basic premise of 0 2 was that a Griffiths 
singularity in the non-dilute system would be maintained or suppressed by the same 
terms in v,(R), equation (18), which gave rise to the singularity in the dilute case. Thus 
v"'(R) can be regarded as an approximate solution to the integral equation ( 7 )  which 
reduces to the exact solution when K1 = 0. Our conclusions from v"'(R) were checked 
by expanding the solutions to equation (18) in powers of K1 and of ( n  + l ) - ' .  
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In 9 3.1 we studied the magnetisation of the chain by treating groups of spins locked 
together by infinitely strong bonds as giant moments; our system was mapped into an 
ordinary Ising chain in a random magnetic field. By tracing over all spins in the system 
except some spin A, we generated a renormalised magnetic field H* acting on A.  Since 
the Griffiths singularity occurs for small h, the formula for H* was linearised in h ;  the 
region of the tail of P*(H*) in which this is a bad approximation can be driven 
arbitrarily far from the origin by making h arbitrarily small. A Griffiths singularity was 
found for Kl>O; coarse-graining the distribution (18) for the dilute chain led to a 
Griffiths singularity for K1 < 0 as well. Decimation also was used in 0 3.2 to study a 
binary mixture of ferromagnetic bonds for d > 1. Perturbation theory suggests the 
existence of a Griffiths singularity, as do the general properties of equation (37b) for 
H*, but the case made is not compelling. 

In short, our arguments for the existence of a Griffiths singularity seem highly 
plausible when d = 1, K 2  = CO and K1 > 0; plausible when d = 1, K 2  = CO and Kl < 0; and 
suggestive but inconclusive when d > 1, K2 > K1 > 0. 
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